
Utilizing JPF for
Multi-Agent Verification

Berndt Farwer

Department of Computer Science
Durham University

berndt.farwer@durham.ac.uk

Supported by EPSRC grants EP/D054788 (Durham) and EP/D052548 (Liverpool).

Joint Project with

the University of Liverpool

Rafael H. Bordini1, Michael Fisher2,

Berndt Farwer1 , Louise Dennis2

1 Durham University, UK

2 University of Liverpool, UK

1

mailto:berndt.farwer@durham.ac.uk
mailto:berndt.farwer@durham.ac.uk

Outline

• Multi-Agent Programming

• BDI Paradigm

• Agent Infrastructure Layer (AIL)

• AIL-based Interpreters

• Property Specification

• Agent JPF (AJPF)

• MCAPL Interface: Adding Further Languages

• Outlook

2

Multi-Agent Programming

• BDI (beliefs, desires, and intentions) Agents

• Mental State

• Beliefs (‘knowledge’)

• Goals (states that the agent wants to bring about)

• Plans (recipes for achieving plans)

• Intentions (stacks of plans for adopted goals)

• Environment

• Events (external)

• Agents interact with Environment through perception

3

Multi-Agent Programming

• Reasoning Cycle

• Typical stages:

• Selection of an Intention

• Selection of an Event

• Determining applicable plans

• Selection of a plan → addition to the current intention stack

• Execution of the head of the intention stack

• Perception of the environment

• Message handling

• Cleanup

4

Executing BDI Programs: The Basic Idea

• Given an achievement goal !g

• Find a plan in the plan library for achieving that goal

• Plan body = sequence of deeds

• Deeds = actions or (sub-)goals

• Add plan to intention stack

• Cycle through the stages repeatedly

• executing actions

• adding plans for new sub-goals

• perceiving changes in the environment

• handling messages

5

Agent Infrastructure Layer (AIL)

• General model-checking framework for agent programming languages

• Not a new programming language

• Does not have its own reasoning cycle

• AIL is a Java library with clear semantics

• Data structures for Beliefs, Goals, Intentions, and Plans

• Rules and operations to build own reasoning cycle

• default functions

• extensible (new rules and operations, overridden defaults)

• Integrated property specification language

• Properties are specified at the AIL level

LTL

special modalities for belief, goal, etc.

representing the agents’
metal states

based on stacks of deeds

6

AIL architecture

AgentSpeak

!!!!!!!!!!!!!!!!! 3APL

""""
""

""
""

" Jadex

##

MetateM

$$##
##

##
##

##
· · ·

AIL

##

$$$$$$$$ property

%% &&%%%%%%%%%%

Java code '' AJPF((

##

)) '' Java listener

JPF)) '' Java listener
##

((

7

AIL Toolkit

• AIL data structures

• AIL methods used by
language interpreters

• Common property
specification language

• Extensibility

• Open Source

AIL classes/methods

APL Agent APL-AIL

Interpreter

AIL Data

Structures

JPF VM

Unification & other optimised functions

Property Specification Language

8

Languages

• The framework is designed to execute and verify many BDI languages, such as

• GOAL

• SAAPL

• AgentSpeak

• 3APL/2APL

• … your favourite language

… also allows
heterogeneous MAS!

9

AIL-Based Interpreter Requirements

• Plug together an AIL-based interpreter for each language

• Java library of rules and operations on the agent state
used to construct a custom reasoning cycle

• AIL needs to provide means to do most of what other APLs do, e.g

• Keep track of open goals, events, (suspended) intentions

• Maintain multiple sequences of deeds to be performed

• multiple intentions

• Allow deed sequences to be related to the goals/events that generated them

• Allow goals to be dropped

• Deal with language-specific agent components

10

AIL Agent State

< ag , i , I ,Pl ,A,B ,BR,P ,C , In,Out ,Cn,Cx ,Ann,RC >

ag is a unique identifier for the agent,

i is the current intention, I comprises all extant intentions,

Pl the currently applicable plans,

A is a set of actions,

B the agent’s beliefs,

BR the agent’s belief rules,

P the agent’s plan library,

C the agent’s constraints,

In, Out are the agent’s inbox and outbox,

Cn the agent’s content, Cx the agent’s context,

Ann a set of annotations,

RC is the current stage in the agent’s reasoning cycle.

11

Property Specification Language (PSL)

• LTL

• ∧, ∨, ¬, U, R

• Modalities on ground first order formulae

• Belief B

• Goal G

• Intention I

• Perception P

• Action A

Typical properties:

♢B(ag1, done)

G(ag1, some_goal) → ♢B(ag1, some_goal)

♢¬G(ag1, some_goal)

ag ::= constant
f ::= ground first order formula
φ ::= B(ag , f) | G(ag , f) | A(ag , f) | I(ag , f) | P(f)

| φ ∧ φ | φ ∨ φ | ¬φ | φUφ | φRφ

12

Property Specification Language (PSL)

• MAS |=MC B(ag , f) iff f ∈ agBB

where agBB is the belief base of agent

• MAS |=MC G(ag , f) iff !af ∈ agG

• MAS |=MC A(ag , f) iff the last action
recorded by the environment was ag taking action f

• MAS |=MC I(ag , f) iff !af ∈ agG

and f has been added to ag ’s intentions

• MAS |=MC P(f) iff f is a percept
from the environment.

13

Using AIL/AJPF

• Write program in your favourite language(s)

• Specify properties to check

• Translate program(s) into AIL representation

• Automated translators under development

• Translate properties into our PSL

• Again, automated translators will be made available

• Write environment

• Run program(s) in AJPF

• execution

• verification

14

The MCAPL Interface

• What if there is no custom AIL interpreter for a language?

• Original interpreter can interface with the property specification language and
the environment

• Does not use AIL data structures → has to define modalities

• allows heterogeneous execution/verification just as with customised AIL-based
language interpreters

• However:

• Is not optimised for model checking

• Results rely on ‘correct’ implementation of modalities and correct interfacing

15

MCAPL Interface

• Executes the MAS

• Extends property specification
to non-AIL interpreters

• Provides the Listener for JPF
model checking

non-AIL

Interpreter

AIL classes/methods

APL1-AIL

Interpreter

APL2-AIL

Interpreter

APLn-AIL

Interpreter
…

MCAPL Interface

Property Specification Language

16

AJPF (Agent Java Pathfinder)

• (Negated) Property translated into Büchi automaton

• On-the-fly construction of product automaton

• Product automaton

• Agent program

• Property automaton

• Changes in the product automaton trigger JPF

• generating a violation or

• pruning the search space

• Environment is part of the multi-agent program

• Listener

• Problem: long execution times

17

AJPF – Addressing Efficiency

• atomic sections

• initialisation phase

• reasoning cycle

• Incorporate AIL, MCAPL, and PSL into JPF.

• Improve Efficiency

• Cut down on number of objects, …

• Provide adequate UI for

• agent programs

• properties

• other options

18

Atomics

♦ag1
pickup JPF AJPF

elapsed time: 0:07:03 0:00:04
states: new=11144 new=24

visited=11080 visited=11
backtracked=22223 backtracked=34

search: maxDepth=1860 maxDepth=12
choice generators: thread=11145 thread=25
heap: gc=28161 gc=65

new=3472584 new=16551
free=3058118 free=14741

instructions: 235599025 1051314
max memory: 59MB 26MB
loaded code: classes=219 classes=219

methods=2807 methods=2807

19

Outlook

• Make execution in JPF more efficient
(4 states per second are not enough)

• Automate language and property translations

• Customise state-space visualisation

• StateSpaceDot listener
state space visualisation

• Case studies

20

