
Symbolic Execution of Java Byte-code

Corina Pãsãreanu

Perot Systems/NASA Ames Research

ISSTA’08 paper:

“Combining Unit-level Symbolic Execution and System-level Concrete Execution for
Testing NASA Software”

Corina Pãsãreanu, Peter Mehlitz, David Bushnell, Karen Gundy-Burlet, Michael Lowry (NASA Ames)

Suzette Person (University of Nebraska, Lincoln)

Mark Pape (NASA JSC)

Automatic Test Input Generation

• Objective:
– Develop automated techniques for error detection in complex, flight control software

for manned space missions
• Solutions:

– Model checking – automatic, exhaustive; suffers from scalability issues
– Static analysis – automatic, scalable, exhaustive; reported errors may be spurious
– Testing – reported errors are real; may miss errors; widely used

• Our solution: Symbolic Java PathFinder (Symbolic JPF)
– Symbolic execution with model checking and constraint solving for automatic test

input generation
– Generates test suites that obtain high coverage for flexible (user-definable)

coverage metrics
– During test generation process, checks for errors
– Uses the analysis engine of the Ames JPF tool
– Freely available at:

http://javapathfinder.sourceforge.net (symbc extension)

Symbolic JPF

• Implements a non-standard interpreter of byte-codes
– To enable JPF to perform symbolic analysis

• Symbolic information:
– Stored in attributes associated with the program data
– Propagated dynamically during symbolic execution

• Handles:
– Mixed integer/real constraints
– Complex Math functions
– Pre-conditions, multithreading

• Allows for mixed concrete and symbolic execution
– Start symbolic execution at any point in the program and at any time during

execution
– Dynamic modification of execution semantics
– Changing mid-stream from concrete to symbolic execution

• Application:
– Testing a prototype NASA flight software component
– Found serious bug that resulted in design changes to the software

Background: Model Checking vs. Testing/Simulation

OK
FSM

Simulation/
Testing

error

OK
FSM

specification

Model Checking

error trace

Line 5: …
Line 12: …
…
Line 41:…
Line 47:…

• Model individual state
machines for subsystems /
features

• Simulation/Testing:
– Checks only some of the

system executions
– May miss errors

• Model Checking:
– Automatically combines

behavior of state machines
– Exhaustively explores all

executions in a systematic
way

– Handles millions of
combinations – hard to
perform by humans

– Reports errors as traces
and simulates them on
system models

Background: Java PathFinder (JPF)

• Explicit state model checker for Java bytecode
– Built on top of custom made Java virtual machine

• Focus is on finding bugs
– Concurrency related: deadlocks, (races), missed signals etc.
– Java runtime related: unhandled exceptions, heap usage, (cycle budgets)
– Application specific assertions

• JPF uses a variety of scalability enhancing mechanisms
– user extensible state abstraction & matching
– on-the-fly partial order reduction
– configurable search strategies
– user definable heuristics (searches, choice generators)

• Recipient of NASA “Turning Goals into Reality” Award, 2003.
• Open sourced:

– <javapathfinder.sourceforge.net>
– ~14000 downloads since publication

• Largest application:
– Fujitsu (one million lines of code)

• King [Comm. ACM 1976]
• Analysis of programs with unspecified inputs

– Execute a program on symbolic inputs

• Symbolic states represent sets of concrete states
• For each path, build a path condition

– Condition on inputs – for the execution to follow that path
– Check path condition satisfiability – explore only feasible paths

• Symbolic state
– Symbolic values/expressions for variables
– Path condition
– Program counter

Background: Symbolic Execution

x = 1, y = 0

1 > 0 ? true

x = 1 + 0 = 1

y = 1 – 0 = 1

x = 1 – 1 = 0

0 > 1 ? false

int x, y;

if (x > y) {

 x = x + y;

 y = x – y;

 x = x – y;

 if (x > y)

 assert false;

}

Concrete Execution PathCode that swaps 2 integers
Example – Standard Execution

[PC:true]x = X,y = Y

[PC:true] X > Y ?

[PC:X>Y]y = X+Y–Y = X

[PC:X>Y]x = X+Y–X = Y

[PC:X>Y]Y>X ?

int x, y;

if (x > y) {

 x = x + y;

 y = x – y;

 x = x – y;

 if (x > y)

 assert false;

}

Code that swaps 2 integers: Symbolic Execution Tree:

[PC:X≤Y]END [PC:X>Y]x= X+Y
false true

[PC:X>Y∧Y≤X]END [PC:X>Y∧Y>X]END
false true

path condition

Example – Symbolic Execution

False!

Solve path conditions → test inputs

• JPF search engine used
– To generate and explore the symbolic execution tree
– Also used to analyze thread inter-leavings and other forms of non-

determinism that might be present in the code
– No state matching performed

• In general, un-decidable
– To limit the (possibly) infinite symbolic search state space resulting from

loops, we put a limit on
• The model checker’s search depth or
• The number of constraints in the path condition

• Off-the-shelf decision procedures/constraint solvers used to check
path conditions
– Model checker backtracks if path condition becomes infeasible
– Generic interface for multiple decision procedures

• Choco (for linear/non-linear integer/real constraints, mixed constraints),
http://sourceforge.net/projects/choco/

• IASolver (for interval arithmetic)
http://www.cs.brandeis.edu/~tim/Applets/IAsolver.html

Symbolic JPF

Implementation
• Key mechanisms:

– JPF’s bytecode instruction factory
• Replace or extend standard concrete

execution semantics of byte-codes with
non-standard symbolic execution

– Attributes associated w/ program state
• Stack operands, fields, local variables
• Store symbolic information
• Propagated as needed during symbolic

execution

• Other mechanisms:
– Choice generators:

• For handling branching conditions
during symbolic execution

– Listeners:
• For printing results of symbolic analysis

(method summaries)
• For enabling dynamic change of

execution semantics (from concrete to
symbolic)

– Native peers:
• For modeling native libraries, e.g.

capture Math library calls and send
them to the constraint solver

JPF Structure:

Instruction
Factory

An Instruction Factory for Symbolic Execution of Byte-codes

We created
SymbolicInstructionFactory

– Contains instructions for the symbolic
interpretation of byte-codes

– New Instruction classes derived from
JPF’s core

– Conditionally add new functionality;
otherwise delegate to super-classes

– Approach enables simultaneous
concrete/symbolic execution

JPF core:
– Implements concrete execution semantics based on

stack machine model
– For each method that is executed, maintains a set of

Instruction objects created from the method byte-
codes

– Uses abstract factory design pattern to instantiate
Instruction objects

Attributes for Storing Symbolic Information

• Used previous experimental JPF extension
of slot attributes

– Additional, state-stored info associated with
locals & operands on stack frame

• Generalized this mechanism to include field
attributes

• Attributes are used to store symbolic values
and expressions created during symbolic
execution

• Attribute manipulation done mainly inside
JPF core

– We only needed to override instruction
classes that create/modify symbolic
information

– E.g. numeric, compare-and-branch, type
conversion operations

• Sufficiently general to allow arbitrary value
and variable attributes

– Could be used for implementing other
analyses

– E.g. keep track of physical dimensions and
numeric error bounds or perform concolic
execution

Program state:
– A call stack/thread:

• Stack frames/executed methods
• Stack frame: locals & operands

– The heap (values of fields)
– Scheduling information

Handling Branching Conditions

• Symbolic execution of branching conditions involves:
– Creation of a non-deterministic choice in JPF’s search

– Path condition associated with each choice

– Add condition (or its negation) to the corresponding path condition

– Check satisfiability (with Choco or IASolver)

– If un-satisfiable, instruct JPF to backtrack

• Created new choice generator
public class PCChoiceGenerator

extends IntIntervalGenerator {
PathCondition[] PC;

…

}

Example: IADD

public class IADD extends
Instruction { …

 public Instruction execute(…
ThreadInfo th){
int v1 = th.pop();
int v2 = th.pop();
th.push(v1+v2,…);
return getNext(th);

 }
}

public class IADD extends
 ….bytecode.IADD { …
 public Instruction execute(…
 ThreadInfo th){
 Expression sym_v1 = ….getOperandAttr(0);
 Expression sym_v2 = ….getOperandAttr(1);
 if (sym_v1 == null && sym_v2 == null)
 // both values are concrete
 return super.execute(… th);
 else {

 int v1 = th.pop();
 int v2 = th.pop();
 th.push(0,…); // don’t care
 …
 ….setOperandAttr(Expression._plus(

sym_v1,sym_v2));
 return getNext(th);

 }
 }
}

Concrete execution of IADD byte-code: Symbolic execution of IADD byte-code:

Example: IFGE

public class IFGE extends
Instruction { …

 public Instruction execute(…
ThreadInfo th){
cond = (th.pop() >=0);
if (cond)

 next = getTarget();
else

 next = getNext(th);
return next;

 }
}

public class IFGE extends
 ….bytecode.IFGE { …
 public Instruction execute(…
 ThreadInfo th){
 Expression sym_v = ….getOperandAttr();
 if (sym_v == null)
 // the condition is concrete
 return super.execute(… th);
 else {

 PCChoiceGen cg = new PCChoiceGen(2);…
 cond = cg.getNextChoice()==0?false:true;
 if (cond) {

 pc._add_GE(sym_v,0);
 next = getTarget();
 }
 else {
 pc._add_LT(sym_v,0);
 next = getNext(th);
 }
 if (!pc.satisfiable()) … // JPF backtrack
 else cg.setPC(pc);
 return next;
 } } }

Concrete execution of IFGE byte-code: Symbolic execution of IFGE byte-code:

How to Execute a Method Symbolically

JPF run configuration:

+vm.insn_factory.class=gov.nasa.jpf.symbc.SymbolicInstructionFactory

+jpf.listener=gov.nasa.jpf.symbc.SymbolicListener

+vm.peer_packages=gov.nasa.jpf.symbc:gov.nasa.jpf.jvm

+symbolic.dp=iasolver

+symbolic.method=UnitUnderTest(sym#sym#con)

Main

Symbolic input globals (fields) and method pre-conditions can be
specified via user annotations

Instruct JPF to use
symbolic byte-code set

Print PCs and
method summaries

Use IASolver as a
decision procedure

Method to be executed symbolically
(3rd parameter left concrete)

Main application class
containing method under test

Use symbolic peer
package for Math library

“Any Time” Symbolic Execution
• Symbolic execution

– Can start at any point in the program
– Can use mixed symbolic and concrete

inputs
– No special test driver needed –

sufficient to have an executable
program that uses the method/code
under test

• Any time symbolic execution
– Use specialized listener to monitor

concrete execution and trigger
symbolic execution based on certain
conditions

• Unit level analysis in realistic contexts
– Use concrete system-level execution to

set-up environment for unit-level
symbolic analysis

• Applications:
– Exercise deep system executions
– Extend/modify existing tests: e.g. test

sequence generation for Java
containers

Case Study:
 Onboard Abort Executive (OAE)

• Prototype for CEV ascent abort handling being
developed by JSC GN&C

• Currently test generation is done by hand by JSC
engineers

• JSC GN&C requires different kinds of requirement
and code coverage for its test suite:
– Abort coverage, flight rule coverage
– Combinations of aborts and flight rules coverage
– Branch coverage
– Multiple/single failures

OAE Structure

Inputs

Pick Highest Ranked Abort

Checks Flight Rules
to see if an abort must occur

Select Feasible Aborts

Results for OAE

• Baseline
– Manual testing: time consuming (~1 week)
– Guided random testing could not cover all aborts

• Symbolic JPF
– Generates tests to cover all aborts and flight rules
– Total execution time is < 1 min
– Test cases: 151 (some combinations infeasible)
– Errors: 1 (flight rules broken but no abort picked)
– Found major bug in new version of OAE
– Flight Rules: 27 / 27 covered
– Aborts: 7 / 7 covered
– Size of input data: 27 values per test case

• Flexibility
– Initially generated “minimal” set of test cases violating multiple flight rules
– OAE currently designed to handle single flight rule violations
– Modified algorithms to generate such test cases

Generated Test Cases and Constraints

Test cases:
// Covers Rule: FR A_2_A_2_B_1: Low Pressure Oxodizer Turbopump speed limit exceeded
// Output: Abort:IBB
CaseNum 1;
CaseLine in.stage_speed=3621.0;
CaseTime 57.0-102.0;

// Covers Rule: FR A_2_A_2_A: Fuel injector pressure limit exceeded
// Output: Abort:IBB
CaseNum 3;
CaseLine in.stage_pres=4301.0;
CaseTime 57.0-102.0;
…

Constraints:
//Rule: FR A_2_A_1_A: stage1 engine chamber pressure limit exceeded Abort:IA

PC (~60 constraints):
in.geod_alt(9000) < 120000 && in.geod_alt(9000) < 38000 && in.geod_alt(9000) < 10000 &&
in.pres_rate(-2) >= -2 && in.pres_rate(-2) >= -15 &&
in.roll_rate(40) <= 50 && in.yaw_rate(31) <= 41 && in.pitch_rate(70) <= 100 && …

Integration with End-to-end Simulation

• Input data is constrained by environment/physical laws
– Example: inertial velocity can not be 24000 ft/s when the geodetic

altitude is 0 ft
– Need to encode these constraints explicitly

• Use simulation runs to get data correlations
– As a result, we eliminated some test cases that were impossible due to

physical laws, for example

• Simulation environment: ANTARES
– Advanced NASA Technology ARchitecture for Exploration Studies
– Used for spacecraft design assessment, performance analysis,

requirements validation, Hardware in the loop and Human in the loop
testing

• Integration
– System level simulations with ANTARES with
– Unit level symbolic analysis

Using System Simulations to Determine Unit Pre-Conditions

• System simulation with ANTARES:
– Set-up input file
– Specify log file with variables to be

logged during the run
– Monte Carlo simulations

• File with designated input variables
• Their probability distributions
• No. of cases to run while sampling from

probability distributions

• Correlation analysis:
– Determine ranges for unit inputs
– Treatment learner [Menzies & Hu, 2003]
– Daikon invariant detector

Comparison with Our Previous Work

• JPF– SE [TACAS’07]:
– http://javapathfinder.sourceforge.net (symbolic extension)
– Worked by code instrumentation (partially automated)
– Quite general but may result in sub-optimal execution

• For each instrumented byte-code, JPF needed to check a set of byte-codes
representing the symbolic counterpart

– Required an approximate static type propagation to determine which byte-code
to instrument [Anand et al.TACAS’07]

• No longer needed in the new framework, since symbolic information is propagated
dynamically

• Symbolic JPF always maintains the most precise information about the symbolic nature
of the data

– Generalized symbolic execution/lazy initialization [TACAS’03, SPIN’04]
• Handles input data structures, arrays
• Plan to move it into Symbolic JPF this summer

– Interfaced with multiple decision procedures (Omega, CVC3/CVCLite, STP,
Yices) via generic interface

• Created generic interface in Symbolic JPF
• Plan to add multiple decision procedures soon

– Plan to add functionality of JPF—SE to Symbolic JPF

Related Work
• Model checking for test input generation [Gargantini & Heitmeyer ESEC/FSE’99, Heimdahl et al.

FATES’03, Hong et al. TACAS’02]
– BLAST, SLAM

• Extended Static Checker [Flanagan et al. PLDI’02]
– Checks light-weight properties of Java

• Symstra [Xie et al. TACAS’05]
– Dedicated symbolic execution tool for test sequence generation
– Performs subsumption checking for symbolic states

• Symclat [d’Amorim et al. ASE’06]
– Context of an empirical comparative study
– Experimental implementation of symbolic execution in JPF via changing all the byte-codes
– Did not use attributes, instruction factory
– Integer symbolic inputs (used CVCLite)

• Bogor/Kiasan [ASE’06]
– Similar to JPF—SE, uses “lazier” approach

• Concolic execution [Godefroid et al. PLDI’05, Sen et al. ESEC/FSE’05]
– DART/CUTE/jCUTE…
– Can not handle multi-threading
– Performs symbolic execution along concrete execution
– We use concrete execution to set-up symbolic execution

• Execution Generated Test Cases [Cadar & Engler SPIN’05]
• Other hybrid approaches:

– Testing, abstraction, theorem proving: better together! [Yorsh et al. ISSTA’06]
– SYNERGY: a new algorithm for property checking [Gulavi et al. FSE’06]

• …

Conclusion and Future Plans
• Symbolic JPF

– Non-standard interpretation of byte-codes
– Symbolic information propagated via attributes associated with program variables, operands, etc.
– Available from <javapathfinder.sourceforge.net>, symbc extension

• Any-time symbolic execution
• Integration with system level simulation

– Use system level Monte Carlo simulation to obtain ranges for inputs
• Application to prototype flight component

– Found major bug
• Current/Future work:

– Test input generation for UML Statecharts; for Simulink/Stateflow/Embedded Matlab
– Apply to NASA software
– Tighter integration with system level simulation
– More decision procedures
– Use symbolic execution for differential analysis
– Compositional analysis

• Use symbolic execution to compute procedure summaries
– Parallel symbolic execution

• JPF in Google summer of code
– Generalized symbolic execution
– Generate/extend test sequences

Questions?

