Symbolic Execution of Java Byte-code

Corina Pasareanu
Perot Systems/NASA Ames Research

ISSTA'08 paper:

“Combining Unit-level Symbolic Execution and System-level Concrete Execution for
Testing NASA Software”

Corina Pasareanu, Peter Mehlitz, David Bushnell, Karen Gundy-Burlet, Michael Lowry (NASA Ames)
Suzette Person (University of Nebraska, Lincoln)
Mark Pape (NASA JSC)

Automatic Test Input Generation

« Objective:
— Develop automated techniques for error detection in complex, flight control software
for manned space missions
« Solutions:
— Model checking — automatic, exhaustive; suffers from scalability issues
— Static analysis — automatic, scalable, exhaustive; reported errors may be spurious
— Testing — reported errors are real; may miss errors; widely used

« Our solution: Symbolic Java PathFinder (Symbolic JPF)

— Symbolic execution with model checking and constraint solving for automatic test
input generation

— Generates test suites that obtain high coverage for flexible (user-definable)
coverage metrics

— During test generation process, checks for errors
— Uses the analysis engine of the Ames JPF tool

— Freely available at:
http://javapathfinder.sourceforge.net (symbc extension)

Symbolic JPF

Implements a non-standard interpreter of byte-codes
— To enable JPF to perform symbolic analysis
Symbolic information:
— Stored in attributes associated with the program data
— Propagated dynamically during symbolic execution
Handles:
— Mixed integer/real constraints
— Complex Math functions
— Pre-conditions, multithreading
Allows for mixed concrete and symbolic execution

— Start symbolic execution at any point in the program and at any time during
execution

— Dynamic modification of execution semantics

— Changing mid-stream from concrete to symbolic execution
Application:

— Testing a prototype NASA flight software component

— Found serious bug that resulted in design changes to the software

/
FSM Simulation/
> Testing
error
FSM
N o
Model Checking
- \tirror trace
specification Line 5 .

Line 12: ...

Line 41:...
Line 47:...

Model individual state
machines for subsystems /
features

Simulation/Testing:

— Checks only some of the
system executions

— May miss errors

Model Checking:

— Automatically combines
behavior of state machines

— Exhaustively explores all
executions in a systematic
way

— Handles millions of
combinations — hard to
perform by humans

— Reports errors as traces
and simulates them on
system models

€& RE
Background: Java PathFinder (JPF)

Explicit state model checker for Java bytecode
— Built on top of custom made Java virtual machine
Focus is on finding bugs
— Concurrency related: deadlocks, (races), missed signals etc.
— Java runtime related: unhandled exceptions, heap usage, (cycle budgets)
— Application specific assertions
JPF uses a variety of scalability enhancing mechanisms
— user extensible state abstraction & matching
— on-the-fly partial order reduction
— configurable search strategies
— user definable heuristics (searches, choice generators)
Recipient of NASA “Turning Goals into Reality” Award, 2003.

Open sourced:
— <javapathfinder.sourceforge.net>
— ~14000 downloads since publication
Largest application:
— Fujitsu (one million lines of code)

Background: Symbolic Execution

King [Comm. ACM 1976]

Analysis of programs with unspecified inputs
— Execute a program on symbolic inputs

Symbolic states represent sets of concrete states

For each path, build a path condition
— Condition on inputs — for the execution to follow that path
— Check path condition satisfiability — explore only feasible paths

Symbolic state

— Symbolic values/expressions for variables
— Path condition

— Program counter

Example — Standard Execution

Code that swaps 2 integers Concrete Execution Path
int x, y; x=1,y=0
if(x>y){ 1 >0 ?true
X=X+Y; x=1+0=1
y=X-Y; y=1-0=1
X=X-Y; x=1-1=0
if (x>y) 0>1 ?false

assert false;
¥

Example — Symbolic Execution

Code that swaps 2 integers: Symbolic Execution Tree:
{path condition
int x, y; [PC:true]x =X,y=Y
if (x>y){ [PC:true] X >Y ?
false true
X=X+Yy; [PC:X<Y]END |[PC:X>Y|x= X+Y
y=X-Y; [PC:X>Y]y = X+Y-Y =X
X=X-Y; [PC:X>Y]x =X+Y-X=Y
if (x >y) [PC:X>Y]Y>X 2
false true
assert false; [PC:X>YAY<X]END [PC:X>YAY>X]END
) False!

Solve path conditions — test inputs

Symbolic JPF

« JPF search engine used
— To generate and explore the symbolic execution tree

— Also used to analyze thread inter-leavings and other forms of non-
determinism that might be present in the code
— No state matching performed
* In general, un-decidable
— To limit the (possibly) infinite symbolic search state space resulting from
loops, we put a limit on
« The model checker’'s search depth or
* The number of constraints in the path condition

« Off-the-shelf decision procedures/constraint solvers used to check
path conditions

— Model checker backtracks if path condition becomes infeasible

— Generic interface for multiple decision procedures
» Choco (for linear/non-linear integer/real constraints, mixed constraints),
http://sourceforge.net/projects/choco/

* |ASolver (for interval arithmetic)
http://www.cs.brandeis.edu/~tim/Applets/IAsolver.html

Implementation

JPF Structure:

Key mechanisms:
JPF’s bytecode instruction factory

Replace or extend standard concrete
execution semantics of byte-codes with
non-standard symbolic execution

Attributes associated w/ program state

Stack operands, fields, local variables
Store symbolic information

Propagated as needed during symbolic
execution

Other mechanisms:
Choice generators:

For handling branching conditions
during symbolic execution

Listeners:

For printing results of symbolic analysis
(method summaries)

For enabling dynamic change of
execution semantics (from concrete to
symbolic)

Native peers:

For modeling native libraries, e.g.
capture Math library calls and send
them to the constraint solver

* class
* jar

verification
target
(Java bytecode
program)

library data/scheduling execution
abstraction heuristics observation semantics
native choice vm bytecode
peer generator listener set
— — —
(v v v v
Virtual Machine state verification
mgnt report
Search Strategy VM
driver Core JPF
A\

system/
apps

property search e
checker listener fond

defect
history

program

search K
observation Rt property

violation

An Instruction Factory for Symbolic Execution of Byte-codes

We created

SymbolicInstructionFactory i
* class

— Contains instructions for the symbolic
interpretation of byte-codes

— New Instruction classes derived from
JPF’s core

— Conditionally add new functionality;
otherwise delegate to super-classes

— Approach enables simultaneous
concrete/symbolic execution

Methodinfo

factory
Instruction[] code

<<InstructionFactory>>

init (JavaClass)

Instruction create (..,instructionName)

AN

Instruction

code[i] =

factory.create(..IFE

Instruction execute!
Q)

JPF core

[N
p
DefaultinstructionFactory ' SymbolicinstructionFactory
i i
I |
L ~>| < -
| — — !
I |
“~= 1ADD IADD |<---
T T
concrete value symbolic value
instruction set instruction set

JPF extension

v

JPF core:

Implements concrete execution semantics based on
stack machine model

For each method that is executed, maintains a set of
Instruction objects created from the method byte-

codes

Uses abstract factory design pattern to instantiate
Instruction objects

Attributes for Storing Symbolic Information

Used previous experimental JPF extension
of slot attributes
— Additional, state-stored info associated with
locals & operands on stack frame
Generalized this mechanism to include field
attributes

Attributes are used to store symbolic values
and expressions created during symbolic
execution

Attribute manipulation done mainly inside
JPF core
— We only needed to override instruction

classes that create/modify symbolic
information

— E.g. numeric, compare-and-branch, type
conversion operations
Sufficiently general to allow arbitrary value
and variable attributes
— Could be used for implementing other
analyses

— E.g. keep track of physical dimensions and
numeric error bounds or perform concolic
execution

stack
(stack frames)

attributes

b——

L

LU

istore
j dup

-~

caller

—
—
call

JPF core
heap
(object fields)
values | attributes
putfield slots
-+ Q
- getfield -
setAttr(i, o) attribute |
object
'Illl'lll'
JPF | create
| extension |
- listener
#| - Instruction - =
etAttr (i - et getOperandAttr (i)
= = natve paer getLocaldAttr (i)

o
return

-———

il

iload

invokevirtual

setOperandAttr(i, o)

setLocalAttr (i, o)

Program state:

A call stack/thread:
» Stack frames/executed methods
« Stack frame: locals & operands

The heap (values of fields)
Scheduling information

Handling Branching Conditions

« Symbolic execution of branching conditions involves:
— Creation of a non-deterministic choice in JPF’s search
— Path condition associated with each choice
— Add condition (or its negation) to the corresponding path condition
— Check satisfiability (with Choco or IASolver)
— If un-satisfiable, instruct JPF to backtrack
« Created new choice generator

public class PCChoiceGenerator
extends IntIntervalGenerator {
PathCondition[] PC;

Example: IADD

Concrete execution of IADD byte-code: Symbolic execution of IADD byte-code:

public class IADD extends public class IADD extends
Instruction {bytecode.IADD {

public Instruction execute(.. public Instruction execute(..

ThreadInfo th) {

int vl = th.pop();
int v2 = th.pop();
th.push (v1+v2,..) ;
return getNext (th) ;

ThreadInfo th) {

Expression sym vl = ...getOperandAttr(0);
Expression sym v2 = ...getOperandAttr(1l);
if (sym vl == null && sym v2 == null)

} return super.execute(.. th);
} else {
int vl = th.pop():;
int v2 = th.pop():;
th.push(O0,..);

... setOperandAttr (Expression. plus(

sym vl,sym v2));
return getNext (th) ;

Example: IFGE

Concrete execution of IFGE byte-code: Symbolic execution of IFGE byte-code:
public class IFGE extends public class IFGE extends
Instruction {bytecode.IFGE { ..

public Instruction execute(...
ThreadInfo th) {

cond = (th.pop() >=0);

public Instruction execute(...
ThreadInfo th) {
Expression sym v = ...getOperandAttr()

if (cond) if (sym v == null)
next = getTarget() ; -
else

return super.execute(.. th);

next = getNext (th) ; else {

return next; PCChoiceGen cg = new PCChoiceGen(2) ;..

cond = cg.getNextChoice ()==0?false:true;
if (cond) {
pc._add GE(sym v,0);
next = getTarget() ;
}
else {
pc._add LT (sym v,0);
next = getNext(th);
}
if ('pc.satisfiable())
else cg.setPC(pc);
return next;

P 1o}

How to Execute a Method Symbolically

JPF run configuration:

. . . : Instruct JPF t
+vm.insn_factory.class=gov.nasa.jpf.symbc.SymboliclnstructionFactory =/ =~ " o0

+jpf.listener=gov.nasa.jpf.symbc.SymbolicListener FrintPCsand
method summaries

Use symbolic peer

+vm.peer_packages=gov.nasa.jpf.symbc:gov.nasa.jpf.jvm package for Math library

. - Use IASolver as a
+symbolic.dp=iasolver . ision procedure

Method to be executed symbolically

+symbolic.method=UnitUnderTest(sym#sym#con) (3% parameter left concrete)

Main Main application class
containing method under test

Symbolic input globals (fields) and method pre-conditions can be
specified via user annotations

“Any Time” Symbolic Execution

Symbolic execution
— Can start at any point in the program
— Can use mixed symbolic and concrete
inputs
— No special test driver needed —
sufficient to have an executable

program that uses the method/code
under test

Any time symbolic execution

— Use specialized listener to monitor
concrete execution and trigger
symbolic execution based on certain
conditions

Unit level analysis in realistic contexts

— Use concrete system-level execution to
set-up environment for unit-level
symbolic analysis

Applications:
— Exercise deep system executions

— Extend/modify existing tests: e.g. test
sequence generation for Java
containers

observation of concrete states identifying
potential unit test conditions

JPF listener

o ————
-

- -

concrete value execution

!
\

symbolic value execution

[+]+

\

DD

—

0.
o ¥

Onboard Abort Executive (OAE)

* Prototype for CEV ascent abort handling being
developed by JSC GN&C
* Currently test generation is done by hand by JSC
engineers
« JSC GN&C requires different kinds of requirement
and code coverage for its test suite:
— Abort coverage, flight rule coverage
— Combinations of aborts and flight rules coverage
— Branch coverage
— Multiple/single failures

OAE Structure

Inputs

l

Checks Flight Rules
to see 1f an abort must occur

\ 4

Select Feasible Aborts

l

Pick Highest Ranked Abort

Results for OAE

Baseline

— Manual testing: time consuming (~1 week)

— Guided random testing could not cover all aborts
Symbolic JPF

— Generates tests to cover all aborts and flight rules
— Total execution time is <1 min

— Test cases: 151 (some combinations infeasible)

— Errors: 1 (flight rules broken but no abort picked)

— Found major bug in new version of OAE

— Flight Rules: 27 / 27 covered

— Aborts: 7 /7 covered

— Size of input data: 27 values per test case

Flexibility

— Initially generated “minimal” set of test cases violating multiple flight rules
— OAE currently designed to handle single flight rule violations

— Modified algorithms to generate such test cases

Generated Test Cases and Constraints

Test cases:

// Output: Abort:IBB

CaseNum 1;

Caseline in.stage speed=3621.0;
CaseTime 57.0-102.0;

/l Covers Rule: FR A _2 A 2 A: Fuel injector pressure limit exceeded
// Output: Abort:IBB

CaseNum 3;

Caseline in.stage pres=4301.0;

CaseTime 57.0-102.0;

Constraints:

/IRule: FR A_2 A 1 _A: stage1 engine chamber pressure limit exceeded Abort:IA

PC (~60 constraints):

in.geod_alt(9000) < 120000 && in.geod_alt(9000) < 38000 && in.geod_alt(9000) < 10000 &&
in.pres_rate(-2) >= -2 && in.pres_rate(-2) >= -15 &&

in.roll_rate(40) <= 50 && in.yaw_rate(31) <= 41 && in.pitch_rate(70) <= 100 && ...

Integration with End-to-end Simulation

Input data is constrained by environment/physical laws

— Exampile: inertial velocity can not be 24000 ft/s when the geodetic
altitude is O ft

— Need to encode these constraints explicitly
Use simulation runs to get data correlations

— As a result, we eliminated some test cases that were impossible due to
physical laws, for example

Simulation environment: ANTARES
— Advanced NASA Technology ARchitecture for Exploration Studies

— Used for spacecraft design assessment, performance analysis,
requirements validation, Hardware in the loop and Human in the loop
testing

Integration
— System level simulations with ANTARES with
— Unit level symbolic analysis

Using System Simulations to Determine Unit Pre-Conditions

« System simulation with ANTARES: |
— Set-up input file \ i /
— Specify log file with variables to be \
logged during the run
|
correlation

— Monte Carlo simulations
+ File with designated input variables ~ . - analysis prcodad
* Their probability distributions ”"’T e
* No. of cases to run while sampling from Tes‘t
probability distributions Unit

« Correlation analysis: Comoic
— Determine ranges for unit inputs {}executions
— Treatment learner [Menzies & Hu, 2003]

______ interface
~=™ monitoring

) 4

[T muttiple
concrete
executions

— Daikon invariant detector

Comparison with Our Previous Work

« JPF-SE [TACAS'07]:

hitp://javapathfinder.sourceforge.net (symbolic extension)
Worked by code instrumentation (partially automated)

Quite general but may result in sub-optimal execution

» For each instrumented byte-code, JPF needed to check a set of byte-codes
representing the symbolic counterpart

Required an approximate static type propagation to determine which byte-code

to instrument [Anand et al. TACAS'07]

* No longer needed in the new framework, since symbolic information is propagated
dynamically

+ Symbolic JPF always maintains the most precise information about the symbolic nature
of the data

Generalized symbolic execution/lazy initialization [TACAS’'03, SPIN’04]

» Handles input data structures, arrays

« Plan to move it into Symbolic JPF this summer
Interfaced with multiple decision procedures (Omega, CVC3/CVClLite, STP,
Yices) via generic interface

» Created generic interface in Symbolic JPF

« Plan to add multiple decision procedures soon

Plan to add functionality of JPF—SE to Symbolic JPF

Related Work

* Model checking for test input generation [Gargantini & Heitmeyer ESEC/FSE’99, Heimdahl et al.
FATES’03, Hong et al. TACAS’02]
— BLAST, SLAM
+ Extended Static Checker [Flanagan et al. PLDI'02]
— Checks light-weight properties of Java
 Symstra [Xie et al. TACAS’'05]
— Dedicated symbolic execution tool for test sequence generation
— Performs subsumption checking for symbolic states
« Symclat [d’Amorim et al. ASE’06]
— Context of an empirical comparative study
— Experimental implementation of symbolic execution in JPF via changing all the byte-codes
— Did not use attributes, instruction factory
— Integer symbolic inputs (used CVClLite)
+ Bogor/Kiasan [ASE’06]
— Similar to JPF—SE, uses “lazier” approach
« Concolic execution [Godefroid et al. PLDI'05, Sen et al. ESEC/FSE’05]
— DART/CUTE/|CUTE...
— Can not handle multi-threading
— Performs symbolic execution along concrete execution
— We use concrete execution to set-up symbolic execution
+ Execution Generated Test Cases [Cadar & Engler SPIN’05]

« Other hybrid approaches:
— Testing, abstraction, theorem proving: better together! [Yorsh et al. ISSTA'06]
— SYNERGY: a new algorithm for property checking [Gulavi et al. FSE’06]

Conclusion and Future Plans

Symbolic JPF

Non-standard interpretation of byte-codes
Symbolic information propagated via attributes associated with program variables, operands, etc.
Available from <javapathfinder.sourceforge.net>, symbc extension

Any-time symbolic execution
Integration with system level simulation

Use system level Monte Carlo simulation to obtain ranges for inputs

Application to prototype flight component

Found major bug

Current/Future work:

Test input generation for UML Statecharts; for Simulink/Stateflow/Embedded Matlab
Apply to NASA software
Tighter integration with system level simulation
More decision procedures
Use symbolic execution for differential analysis
Compositional analysis
+ Use symbolic execution to compute procedure summaries
Parallel symbolic execution

JPF in Google summer of code

Generalized symbolic execution
Generate/extend test sequences

Questions?

