
State Extensions for Java PathFinder

Darko Marinov
University of Illinois at Urbana-Champaign

JPF Workshop
May 1, 2008

Broader Context: Work on JPF at UIUC

• Two lines of work
– Extend functionality
– Improve performance

• Summary
– Techniques: Incremental state-space exploration,

Delta execution, Mixed execution, Symbolic exec.
– Six papers: TSE 2008, ICSE 2008, ICSE Demo

2008, ISSTA 2007, ICFEM 2006, ASE 2006
– Several contributions to JPF codebase: overflow

checking, untracked fields, bug fixes

Collaborators

• Darko’s grad students
– Marcelo d'Amorim (PhD 2007), Steven Lauterburg

• Undergrad visitors from University of Belgrade
– Milos Gligoric, Tihomir Gvero,

Aleksandar Milicevic, Sasa Misailovic
• Other researchers from UIUC

– Ahmed Sobeih, Mahesh Viswanathan
• Other researchers from elsewhere

– Carlos Pacheco (MIT), Michael Ernst (MIT),
Sarfraz Khurshid (UT Austin), Tao Xie (NCSU)

Java PathFinder

• Java PathFinder (JPF) is an explicit-state
model checker for Java programs
– Used to find bugs in programs or verify properties

• Takes as input a Java program and explores
all executions that the program can have

• JPF generates as output:
– Executions that violate given properties
– Test inputs for the given program
– Statistics about state-space exploration

Example: Red-black tree

class TreeMap {
int size; Entry root;
static class Entry {

int key, value; boolean color;
Entry left, right, parent; ...

}
void put(int key, int value) { ... }
void remove(int key) { ... }

}

Simplified class TreeMap: A driver for exploration of tree states:

// input bounds sequence length
// and range of input keys
static void main(int N) {

// an empty tree, the root object for exploration
TreeMap t = new TreeMap();
for (int i = 0; i < N; i++) {

int methodNum = Verify.getInt(0, 1);
switch (methodNum) {

case 0: t.put(Verify.getInt(1, N), 0); break;
case 1: t.remove(Verify.getInt(1, N)); break;

}
Verify.ignoreIfPreviouslySeen(t);
// incrementCounters(methodNum == 1);

}
}

Generates method sequences, not directly
object graphs (which Korat does)

2

31

0
size

Explicit-state model checking

1

0
size

1
size

put(1)

remove(1)

put(2)

remove(2)

• Store state
• Take next value
• Execute operation
• Prune path (if state was seen)
• Restore state (backtrack)

11
size

12
size

2

put(1)

put(2)

remove

…

Java PathFinder – state representation
• JPF is a backtrackable Java Virtual Machine (JVM)

– Runs on the top of the host JVM
• Uses special representation for state of model

checked program

JPF

JVM

Java program
(classfiles)

2

31

0
size

…
97: [2, 98, 99]
98: [1, -1, -1]
99: [3, -1, -1]

…

Java PathFinder – operations

• Operations on special state representation:
– Bytecode execution: manipulates state to execute

program bytecodes
– State backtracking: stores/restores state to

backtrack execution for state-space exploration
– State comparison: detects cycles in the state

space

Java PathFinder – MJI

• Model Java Interface (MJI)
– Allows host JVM code to manipulate JPF state
– Provides a mechanism for executing parts of

application code on the host JVM
– Similar to JNI for Java/JVM

• Quote from JPF documentation: “For
components that are not property-relevant, it
makes sense to delegate the execution from
the state-tracked JPF into the non-state
tracked host VM.”

Back to the example
// input bounds sequence length
// and range of input keys
static void main(int N) {

// an empty tree, the root object for exploration
TreeMap t = new TreeMap();
for (int i = 0; i < N; i++) {

int methodNum = Verify.getInt(0, 1);
switch (methodNum) {

case 0: t.put(Verify.getInt(1, N), 0); break;
case 1: t.remove(Verify.getInt(1, N)); break;

}
Verify.ignoreIfPreviouslySeen(t);
incrementCounters(methodNum == 1);

}
}

static int totalCounter = 0, lastRemoveCounter = 0;
static void incrementCounters(boolean isLastRemove) {

totalCounter++;
if (isLastRemove) lastRemoveCounter++;

}

Choose one by one?

Execute more efficiently?

Variables lose values
after backtracking?

What happen when
code changes?

Some of our state extensions
// input bounds sequence length
// and range of input keys
static void main(int N) {

// an empty tree, the root object for exploration
TreeMap t = new TreeMap();
for (int i = 0; i < N; i++) {

int methodNum = Verify.getInt(0, 1);
switch (methodNum) {

case 0: t.put(Verify.getInt(1, N), 0); break;
case 1: t.remove(Verify.getInt(1, N)); break;

}
Verify.ignoreIfPreviouslySeen(t);
incrementCounters(methodNum == 1);

}
}

static int totalCounter = 0, lastRemoveCounter = 0;
static void incrementCounters(boolean isLastRemove) {

totalCounter++;
if (isLastRemove) lastRemoveCounter++;

}

Delta Execution:
execute all together

Mixed Execution:
execute methods on JVM

Untracked State:
not backtrack some fields

Incremental Checking:
reuse for code changes

Bytecode
execution

State
backtracking

State
comparison

Untracked
State

X

Delta
Execution

X X X

Mixed
Execution

X

Incremental
Checking

X X

Extensions target JPF operations

Outline

• Overview
• Untracked State
• Delta Execution
• Mixed Execution
• Incremental Checking
• Conclusions

Untracked state [Gvero et al. 2008]

• Provides a new functionality in JPF
– By default, JPF stores and restores the entire JVM

state during backtracking
– Untracked State allows the user to mark that

certain parts of the state JPF should not restore
during backtracking

• Useful for collecting some information about all
execution paths, e.g., counting some events or
measuring coverage

Changes

• Added Java annotation: @UntrackedField
• Used to mark some fields as untracked, i.e.,

not to be restored during backtracking

@UntrackedField
static int totalCounter = 0;
@UntrackedField
static int lastRemoveCounter = 0;
static void incrementCounters(boolean isLastRemove) {

totalCounter++;
if (isLastRemove) lastRemoveCounter++;

}

Untracked state - definition

• Our implementation allows both static and
non-static fields, as well as primitive and
reference fields, to be marked as untracked

• An object is untracked if all its fields are
untracked

• If an untracked reference points to an object,
that object and all objects reachable from it are
untracked
– Gets tricky with aliasing (some tracked, some

untracked references), details in paper & code doc

Our implementation

• New package gov.nasa.jpf.jvm.untracked
• Several changes to existing classes, aiming to

minimally affect existing JPF code
– Did not change the way that JPF stores the state:

JPF still stores all fields of all objects, even if some
are untracked

– Only changed the way that JPF restores the state
to avoid restoring untracked fields and objects

• Our code is integrated in JPF’s repository
– Thanks to Peter for feedback

Previous solution

• Before we added @UntrackedField to JPF,
one had to maintain state not backtracked by
JPF using MJI or listeners

• MJI requires much more coding, for counters:
– Mark the incrementCounters method as native
– Provide a separate class that implements this

method, keeping state on host JVM
• Listeners

– Can intercept certain events
– Manipulating JPF state still requires MJI

Outline

• Overview
• Untracked State
• Delta Execution
• Mixed Execution
• Incremental Checking
• Conclusions

Delta execution [d’Amorim et al. 2007]

• Goal is to speed up state-space exploration
• Exploits the fact that many execution paths

overlap during exploration
• Key idea: share overlapping parts of multiple

executions and separately execute only those
parts that differ

Our approach

• Manipulate several states at once
– A novel representation for a set of concrete states

(called Delta State)
– Efficient operations for that representation

• Targets all three major JPF state operations
– Bytecode execution operates on Delta State
– State backtracking restores Delta State
– State comparison handles many states at once

Brief illustration
• Executes a method/value combination at once

against multiple TreeMap states, combined
into a single Delta State

• It splits and merges Delta State

1

2

3

2

2

1

2

3∆State

split
…

merge

2

1

2

3

Executions of put(2) on
A set of states

Was seen

931991189099118946.17x32.541502.24ubstack-9
5269778910354059.63x9.4390.80treemap-11

56109805613725714.43x4.1459.70stack-7
60118396014799516.63x5.0884.42queue-7

3598048090804809126.80x21.492724.63heaparray-9
156819483213535.59x3.0817.18filesystem-4
209490193154465918.57x21.59400.84fibheap-8
8101122354062353019.14x28.84552.11deque-9

22688
863

Δ Exec

4127900
4001328

Std
Executions

214.06
458.81

Standard
Exploration Time (sec)

10.79xGMEAN

2063957.11x30.13bst-10
25008338.50x11.91binheap-8

Std / ΔΔ Exec
StatesSubject-Bound

Some experimental results

Outline

• Overview
• Untracked State
• Delta Execution
• Mixed Execution
• Incremental Checking
• Conclusions

Mixed execution [d’Amorim et al. 2006]

• Goal is to speed up execution/exploration
• Key idea: execute some parts of the program

being checked not on JPF but directly on the
host JVM

• Executes on the host JVM deterministic blocks
that have no:
– thread interleavings
– non-deterministic choices

• This extension targets only bytecode execution

Mixed execution – translation

• Translates the state between JPF and JVM:
– From JPF to JVM at the beginning of a block
– From JVM to JPF at the end of a block

• Lazy translation
– Optimization that speeds up Mixed Execution
– Translates only the parts of the state that an

execution accesses (not entire reachable states)

Mixed execution – example

• In the TreeMap driver, executions of the put
and remove methods manipulate the tree

• Mixed Execution executes these methods on
the host JVM in three steps

Brief illustration

…
97: [2, 98, -1]
98: [1, -1, -1]
…

JPF state Host state

…
97: [2, 98, 99]
98: [1, -1, -1]
99: [3, -1, -1]
… m

ix
ed

 e
xe

cu
ti

on

t.put(3)

2

1

2

1 3

1. translates the objects from the JPF representation
into the host JVM representation

2. invokes the method on the translated state

3. translates the state back

Some experimental results

• Evaluated Mixed Execution and lazy
translation on six subject programs that use
JPF to generate tests for data structures
– Mixed Execution can improve the overall time for

state exploration up to 1.73x
– Improves the time for execution of deterministic

blocks up to 3.05x
• Also evaluated Mixed Execution on a fairly

complex routing protocol, AODV, and the
results show a speedup of up to 1.41x

• Lazy translation can improve the eager Mixed
Execution up to 1.35x

Outline

• Overview
• Untracked State
• Delta Execution
• Mixed Execution
• Incremental Checking
• Conclusions

Incremental checking [Lauterburg+ ’08]

• Considers evolving code, basic scenario:
– Explore state space for one version of code
– Code changes (bug fix, optimization…)
– How to explore new version faster?

• Previous work on incremental model checking
focuses on control-intensive properties
– Dynamically allocated data not handled well

• Our goal: speed up JPF for evolving code with
dynamically allocated data

Key idea

• Reuse state space graphs from previous
exploration to speed up next exploration

• In addition to performing exploration and
producing usual output (tests, violations…),
produce a state-space graph
– Nodes in graphs are hashes of states (requires no

data layout changes between versions)
– Edges are transitions (method/value pairs)

• While exploring current version, check if
results are known from previous version

Potential savings

• Bytecode execution
– No need to execute an unchanged transition on a

state found in previous exploration (except to build
new states for exploration)

• State comparison costs
– No need to compute hash code of a state if it is

found in previous exploration
– No need to verify correctness property of a state if

it is found in previous exploration

Time (sec)Subject
& Bound Ver. Non-Inc ISSE Savings

aodv
9

1
2
3

302.24
302.85
302.54

302.46
113.68
113.64

- 0.07%
62.46%
62.44%

binheap
8

1
2

416.90
404.78

428.02
249.13

- 2.67%
38.45%

filesystem
5

1
2

1053.24
1045.59

1064.40
446.91

- 1.06%
57.26%

bst
11

1
2

1782.46
1140.94

2238.98
807.23

- 25.61%
29.25%

filesystem
5

1
2
3

1083.80
1064.53
1040.02

1085.16
419.03
409.41

- 0.13%
60.64%
60.63%

heaparray
8

1
2

67.36
131.73

70.69
137.93

- 4.94%
- 4.71%

Time savings for non-
initial explorations:
-4.71% to 62.46%
(median 56.99%)

Some experimental results

Outline

• Overview
• Untracked State
• Delta Execution
• Mixed Execution
• Incremental Checking
• Conclusions

Conclusions

• Developed several state extensions for JPF
– Extending functionality

• Untracked state for (no) backtracking
• Overflow checking for arithmetic (not in this talk)

– Improving performance
• Delta execution: speedup 0.88x-126.80x
• Mixed execution: speedup up to 1.73x
• Incremental checking: speedup 0.96x-2.66x

• Contributed some code to the JPF codebase
– State extensions + bug fixes

Ongoing and future work

• Ongoing work: optimized generation of object
graphs (Sarfraz’s talk)
– Several optimizations to get over 10x speedup
– Undo Backtracking contributed to JPF

• Future work
– Contribute more code to JPF (this summer: two

GSoC mentees and two undergrad visitors)
– Integrate various extensions (synergistic speedup)
– Speedup: Replace JPF interpreter with compiler??

http://mir.cs.uiuc.edu/jpf

	State Extensions for Java PathFinder
	Broader Context: Work on JPF at UIUC
	Collaborators
	Java PathFinder
	Example: Red-black tree
	Explicit-state model checking
	Java PathFinder – state representation
	Java PathFinder – operations
	Java PathFinder – MJI
	Back to the example
	Some of our state extensions
	Outline
	Untracked state [Gvero et al. 2008]
	Changes
	Untracked state - definition
	Our implementation
	Previous solution
	Outline
	Delta execution [d’Amorim et al. 2007]
	Our approach
	Brief illustration
	Outline
	Mixed execution [d’Amorim et al. 2006]
	Mixed execution – translation
	Mixed execution – example
	Brief illustration
	Some experimental results
	Outline
	Incremental checking [Lauterburg+ ’08]
	Key idea
	Potential savings
	Outline
	Conclusions
	Ongoing and future work

