State Extensions for Java PathFinder

Darko Marinov
University of lllinois at Urbana-Champaign

JPF Workshop
May 1, 2008

Broader Context: Work on JPF at UIUC

* Two lines of work
— Extend functionality
— Improve performance

* Summary

— Techniques: Incremental state-space exploration,
Delta execution, Mixed execution, Symbolic exec.

— Six papers: TSE 2008, ICSE 2008, ICSE Demo
2008, ISSTA 2007, ICFEM 2006, ASE 2006

— Several contributions to JPF codebase: overflow
checking, untracked fields, bug fixes

Collaborators

Darko’s grad students
— Marcelo d'’Amorim (PhD 2007), Steven Lauterburg

Undergrad visitors from University of Belgrade

— Milos Gligoric, Tihomir Gvero,
Aleksandar Milicevic, Sasa Misailovic

Other researchers from UIUC
— Ahmed Sobeih, Mahesh Viswanathan

Other researchers from elsewhere

— Carlos Pacheco (MIT), Michael Ernst (MIT),
Sarfraz Khurshid (UT Austin), Tao Xie (NCSU)

Java PathFinder

« Java PathFinder (JPF) is an explicit-state
model checker for Java programs

— Used to find bugs in programs or verify properties
* Takes as input a Java program and explores
all executions that the program can have
* JPF generates as output:
— Executions that violate given properties
— Test inputs for the given program
— Statistics about state-space exploration

Example: Red-black tree

Simplified class TreeMap:

class TreeMap {

Int size; Entry root;

static class Entry {
int key, value; boolean color;
Entry left, right, parent; ...

}

void put(int key, int value) { ... }

void remove(int key) { ... }

}

size

v\
/@\ J@\

A driver for exploration of tree states:

/[input bounds sequence length
/[and range of input keys
static void main(int N) {
/[an empty tree, the root object for exploration
TreeMap t = new TreeMap();
for (inti=0;i<N;i++){
int methodNum = Verify.getint(0, 1);
switch (methodNum) {
case 0: t.put(Verify.getint(1, N), 0); break;
case 1: t.remove(Verify.getint(1, N)); break;
}
Verify.ignorelfPreviouslySeen(t);
I/ incrementCounters(methodNum == 1);

}
}

Generates method sequences, not directly
object graphs (which Korat does)

Explicit-state model checking

ol

put(2)

» put(2) size
remove(1) N\
remove(2)

remove

put(1

 Store state

* Take next value

« Execute operation

* Prune path (if state was seen)
* Restore state (backtrack)

Java PathFinder — state representation

» JPF is a backtrackable Java Virtual Machine (JVM)
— Runs on the top of the host JVM

» Uses special representation for state of model
checked program

Java program 97: [2, 98, 99]
(classfiles) 98: [1, -1, -1]
99: [3, -1, -1]
size
JPF m7
JVM) ©

Java PathFinder — operations

* Operations on special state representation:

— Bytecode execution: manipulates state to execute
program bytecodes

— State backtracking: stores/restores state to
backtrack execution for state-space exploration

— State comparison: detects cycles in the state
space

Java PathFinder — MJI

* Model Java Interface (MJI)
— Allows host JVM code to manipulate JPF state

— Provides a mechanism for executing parts of
application code on the host JVM

— Similar to JNI for Java/JVM

* Quote from JPF documentation: “For
components that are not property-relevant, it
makes sense to delegate the execution from
the state-tracked JPF into the non-state
tracked host VM.”

Back to the example

What happen when
code changes?
Choose one by one?

Execute more efficiently?

// input bounds sequence length

// and range of input keys

static void main(int N) {
/ an empty tree, the root object for expl
TreeMap t = new TreeMap();
for (inti=0;i<N;i++){

case 1: t.remove(Verify.getint(1, N)); break; «——
}
Verify.ignorelfPreviouslySeen(t);

incrementCounters(methodNum == 1);
} <—

} .
static int totalCounter = 0, lastRemoveCounter = 0;
static void incrementCounters(boolean isLastRemove) {

totalCounter++;
i (isLastRemove) lastRemoveCounter++;

}

Variables lose values
after backtracking?

Some of our state extensions

Incremental Checking:
reuse for code changes
Delta Execution:
execute all together

Mixed Execution:;
execute methods on JVM

// input bounds sequence length

// and range of input keys

static void main(int N) {
/ an empty tree, the root object for expl
TreeMap t = new TreeMap();
for (inti=0;i<N;i++){

case 1: t.remove(Verify.getint(1, N)); break; «——
}
Verify.ignorelfPreviouslySeen(t);

incrementCounters(methodNum == 1);
} <—

} .
static int totalCounter = 0, lastRemoveCounter = 0;
static void incrementCounters(boolean isLastRemove) {

totalCounter++;
i (isLastRemove) lastRemoveCounter++;

}

Untracked State:
not backtrack some fields

Extensions target JPF operations

Bytecode |State State
execution |backtracking |comparison
Untracked X
State
Delta X X X
Execution
Mixed X
Execution
Incremental X X

Checking

Outline

Overview

Untracked State
Delta Execution
Mixed Execution
Incremental Checking
Conclusions

Untracked state [Gvero et al. 2008]

* Provides a new functionality in JPF

— By default, JPF stores and restores the entire JVM
state during backtracking

— Untracked State allows the user to mark that
certain parts of the state JPF should not restore
during backtracking

» Useful for collecting some information about all
execution paths, e.g., counting some events or
measuring coverage

Changes

* Added Java annotation: @UntrackedField

 Used to mark some fields as untracked, i.e.,
not to be restored during backtracking

@UntrackedField

static int totalCounter = 0;

@UntrackedField

static int lastRemoveCounter = 0;

static void incrementCounters(boolean isLastRemove) {
totalCounter++;
If (isLastRemove) lastRemoveCounter++;

Untracked state - definition

* Our implementation allows both static and
non-static fields, as well as primitive and
reference fields, to be marked as untracked

* An object is untracked if all its fields are
untracked

* If an untracked reference points to an object,
that object and all objects reachable from it are
untracked

— Gets tricky with aliasing (some tracked, some
untracked references), details in paper & code doc

Our implementation

* New package gov.nasa.jpf.jvm.untracked

» Several changes to existing classes, aiming to
minimally affect existing JPF code

— Did not change the way that JPF stores the state:
JPF still stores all fields of all objects, even if some
are untracked

— Only changed the way that JPF restores the state
to avoid restoring untracked fields and objects

* QOur code is integrated in JPF’s repository
— Thanks to Peter for feedback

Previous solution

» Before we added @UntrackedField to JPF,
one had to maintain state not backtracked by
JPF using MJI or listeners

* MJI requires much more coding, for counters:

— Mark the incrementCounters method as native

— Provide a separate class that implements this
method, keeping state on host JVM

* Listeners
— Can intercept certain events
— Manipulating JPF state still requires MJI

Outline

Overview

Untracked State
Delta Execution
Mixed Execution
Incremental Checking
Conclusions

Delta execution [d’Amorim et al. 2007}

» Goal is to speed up state-space exploration

* Exploits the fact that many execution paths
overlap during exploration

» Key idea: share overlapping parts of multiple
executions and separately execute only those
parts that differ

Our approach

 Manipulate several states at once

— A novel representation for a set of concrete states
(called Delta State)

— Efficient operations for that representation
« Targets all three major JPF state operations
— Bytecode execution operates on Delta State
— State backtracking restores Delta State
— State comparison handles many states at once

Brief illustration

 Executes a method/value combination at once
against multiple TreeMap states, combined
into a single Delta State

* |t splits and merges Delta Stat
Executions of put(2) on @ A

A set of states \@
/ _ &
>
split
merge

) ©

AState @ @/
S /

e

OO0

Some experimental results

Subject-Bound Exploration Time (sec) # States # Executions
Standard A Exec Std/ A Std A Exec
binheap-8 458.81 11.91 38.50x | 250083 4001328 863
bst-10 214.06 30.13 7.11x | 206395 4127900 | 22688
deque-9 552.11 28.84 19.14x | 623530 | 11223540 810
fibheap-8 400.84 21.59 18.57x | 544659 4901931 209
filesystem-4 17.18 3.08 5.59x 1353 194832 1568
heaparray-9 2724.63 21.49 126.80x | 804809 8048090 359
queue-7 84.42 5.08 16.63x | 147995 1183960 60
stack-7 59.70 4.14 14.43x | 137257 1098056 56
treemap-11 90.80 9.43 9.63x 35405 778910 5269
ubstack-9 1502.24 32.54 46.17x | 991189 9911890 931
GMEAN 10.79x

Outline

Overview

Untracked State
Delta Execution
Mixed Execution
Incremental Checking
Conclusions

Mixed execution [d’Amorim et al. 20006}

Goal is to speed up execution/exploration

Key idea: execute some parts of the program
being checked not on JPF but directly on the
host JVM

Executes on the host JVM deterministic blocks
that have no:

— thread interleavings

— non-deterministic choices

This extension targets only bytecode execution

Mixed execution — translation

 Translates the state between JPF and JVM:
— From JPF to JVM at the beginning of a block
— From JVM to JPF at the end of a block

* Lazy translation

— Optimization that speeds up Mixed Execution

— Translates only the parts of the state that an
execution accesses (not entire reachable states)

Mixed execution — example

* In the TreeMap driver, executions of the put
and remove methods manipulate the tree

 Mixed Execution executes these methods on
the host JVM in three steps

Brief illustration

1. translates the objects from the JPF representation
into the host JVM representation

JPF state Host state

-

97:[2,98,-1]1| ,8 e | @

98: [1, -1, -1] > S @/

D

2 . t.put(3)
97: [2, 98, 99] -

98: [1, -1, -1] §|<J ,,,,,,, R @

2. invokes the method on the translated state

3. translates the state back

Some experimental results

» Evaluated Mixed Execution and lazy
translation on six subject programs that use
JPF to generate tests for data structures

— Mixed Execution can improve the overall time for
state exploration up to 1.73x

— Improves the time for execution of deterministic
blocks up to 3.05x
 Also evaluated Mixed Execution on a fairly

complex routing protocol, AODV, and the
results show a speedup of up to 1.41x

» Lazy translation can improve the eager Mixed
Execution up to 1.35x

Outline

Overview

Untracked State
Delta Execution
Mixed Execution
Incremental Checking
Conclusions

Incremental checking [Lauterburg+ "08]

» Considers evolving code, basic scenario:
— Explore state space for one version of code
— Code changes (bug fix, optimization...)
— How to explore new version faster?
* Previous work on incremental model checking
focuses on control-intensive properties
— Dynamically allocated data not handled well

» Qur goal: speed up JPF for evolving code with
dynamically allocated data

Key idea

* Reuse state space graphs from previous
exploration to speed up next exploration

* In addition to performing exploration and
producing usual output (tests, violations...),
produce a state-space graph

— Nodes in graphs are hashes of states (requires no
data layout changes between versions)

— Edges are transitions (method/value pairs)

* While exploring current version, check if
results are known from previous version

Potential savings

» Bytecode execution

— No need to execute an unchanged transition on a
state found in previous exploration (except to build
new states for exploration)

« State comparison costs

— No need to compute hash code of a state if it is
found in previous exploration

— No need to verify correctness property of a state if
it is found in previous exploration

Some experimental results

Subject Time (sec)
& Bound | Ver. | Non-Inc | ISSE | Savings
. 1 30224 | 302.46| -0.07%
a‘; v 2 302.85| 113.68| 62.46%
3 302.54 | 113.64| 62.44%
binheap 1 416.90 | 428.02| -2.67%
8 2 404.78 | 249.13| 38.45%
bst 1 | 1782.46 | 2238.98 | - 25.61%
11 2 | 114094| 807.23| 29.25%
flosvet 1 | 1083.80| 1085.16 | -0.13%
! eS};S °M ' 2 | 1064.53| 419.03| 60.64%
3 | 1040.02| 409.41| 60.63%
flesystem | 1 | 1053.24| 1064.40 | -1.06%
5 2 | 104559| 446.91| 57.26%
heaparray 1 67.36 70.69 | -4.94%
8 2 131.73| 137.93| -4.71%

Time savings for non-
initial explorations:

-4.71% to 62.46%
(median 56.99%)

Outline

Overview

Untracked State
Delta Execution
Mixed Execution
Incremental Checking
Conclusions

Conclusions

* Developed several state extensions for JPF
— Extending functionality
» Untracked state for (no) backtracking
* Overflow checking for arithmetic (not in this talk)
— Improving performance
 Delta execution: speedup 0.88x-126.80x
* Mixed execution: speedup up to 1.73x
* Incremental checking: speedup 0.96x-2.66x

 Contributed some code to the JPF codebase
— State extensions + bug fixes

Ongoing and future work

* Ongoing work: optimized generation of object
graphs (Sarfraz’'s talk)

— Several optimizations to get over 10x speedup
— Undo Backtracking contributed to JPF

 Future work

— Contribute more code to JPF (this summer: two
GSoC mentees and two undergrad visitors)

— Integrate various extensions (synergistic speedup)
— Speedup: Replace JPF interpreter with compiler??

http://mir.cs.uiuc.edu/jpf

	State Extensions for Java PathFinder
	Broader Context: Work on JPF at UIUC
	Collaborators
	Java PathFinder
	Example: Red-black tree
	Explicit-state model checking
	Java PathFinder – state representation
	Java PathFinder – operations
	Java PathFinder – MJI
	Back to the example
	Some of our state extensions
	Outline
	Untracked state [Gvero et al. 2008]
	Changes
	Untracked state - definition
	Our implementation
	Previous solution
	Outline
	Delta execution [d’Amorim et al. 2007]
	Our approach
	Brief illustration
	Outline
	Mixed execution [d’Amorim et al. 2006]
	Mixed execution – translation
	Mixed execution – example
	Brief illustration
	Some experimental results
	Outline
	Incremental checking [Lauterburg+ ’08]
	Key idea
	Potential savings
	Outline
	Conclusions
	Ongoing and future work

