
Optimizing Generation of Object Graphs
in Java PathFinder

Milos Gligoric, Tihomir Gvero,
Steven Lauterburg, Darko Marinov,

Sarfraz Khurshid

JPF Workshop
1.5.8

Korat-JPF
2

Photo: National Museum of American History

Bugs–Six Decades Ago

1947: Harvard Mark II

Korat-JPF
3

Photos: JPL/NASA

Mars Polar Lander, 1999
Crashed–premature shut down at 40 meters altitude

Korat-JPF
4

Photo: navsource.org

USS Yorktown, 1997
“Dead in the water” for 3 hours

Korat-JPF
5

Java PathFinder

Java PathFinder (JPF) is a popular explicit-state model checker
• Directly checks properties of a wide range of Java programs

Implements a customized Java Virtual Machine
• Runs on the top of the host JVM

Two key operations for explicit state-space search:
• State backtracking: stores/restores state to backtrack the

execution during the state-space exploration
• Control over non-deterministic choices (including thread

scheduling)
Traditional focus: check properties of control, such as deadlock

• Recent work: also check properties of data, such as acyclicity

Korat-JPF
6

Structurally Complex Data

113

1 5 9 13

7

4 6

size: 9 root

servicecity

washington

building

whitehouse

wing

west

room

oval-office

camera

data-type

picture

resolution

640 x 480

accessibility

public

“[city = washington [building = whitehouse
 [wing = west
 [room = oval-office]]]]
 [service = camera [data-type = picture
 [format = jpg]]
 [resolution = 640x480]]
 [accessibility = public]”

Korat-JPF
7

Korat Framework

Enables systematic, constraint-based testing
• E.g., testing on all “small” inputs

Implements a constraint solver for imperative predicates
Takes two inputs:

• A Java predicate that encodes constraints that represent
properties of desired object graphs

• A bound on the size of the graph
Generates all valid graphs (within the given bound)
Performs a backtracking search

• Systematically explores the bounded space of object graphs

constraint instances
solve tests

concretize

Korat-JPF
8

Korat in JPF

Korat solver was originally developed from scratch
• However, it can leverage tools, such as model checkers,

which support backtracking as a fundamental operation

JPF has been used to generate object graphs

We use JPF as an implementation engine for Korat
• Start with a simple instrumentation of the Java predicate
• Observe that a direct implementation makes generation

of object graphs unnecessarily slow in JPF
• Explore changes (optimizations) that could speed-up

Korat in JPF

Korat-JPF
9

JPF State Operations

JPF uses a special representation for the state of program it
checks

It performs three basic kinds of operations on the state
representation:
• Bytecode execution: manipulates the state to execute

the program bytecodes
• State backtracking: stores/restores state to backtrack

the execution during the state-space exploration
• State comparison: detects cycles in the state space

Our changes target each of these operations

Korat-JPF
10

Outline

Overview
Example
Korat search in JPF
Optimizing Korat search in JPF
Evaluation
Conclusions

Korat-JPF
11

Example Korat Input
A set implemented as a red-black tree

public class RedBlackTree {
 Node root;
 int size;

 static class Node {
 int element;
 boolean color;
 Node left, right, parent;
 ...
 }

 boolean repOk() {
 if (!isTree()) return false;
 if (!hasProperColors())
 return false;
 if (!areElementsOrdered())
 return false;
 return true;
 }

boolean isTree() {
 if (root == null) return size == 0; // is size correct
 if (root.parent != null) return false; // incorrect parent
 Set<Node> visited = Factory.<Node>createSet();
 visited.add(root);
 Queue<Node> workList = Factory.<Node>createQueue();
 workList.add(root);
 while (!workList.isEmpty()) {
 Node current = workList.remove();
 if (current.left != null) {
 if (!visited.add(current.left))
 return false; // not a tree
 if (current.left.parent != current)
 return false; // incorrect parent
 workList.add(current.left);
 }
... // analogous for current.right
}
return visited.size() == size; // is size correct
}
...
}

Korat-JPF
12

Korat Input and Output

Input:
• Method repOk—checks whether an object graph indeed

represents a valid red-black tree
• Finitization—provides:

• A bound for the number of objects of each class in
one graph, e.g., number N of Node objects

• A set of values for each field of those objects
• E.g., root, left, right, and parent are either null or

point to one of the N Node objects
Output:

• Enumeration of all valid non-isomorphic object graphs,
within the bounds given in the finitization

• E.g., all valid red-black trees within the bounds

Korat-JPF
13

Korat Search

Systematically explores the bounded input space
• Orders values for each field to build its field domain
• Starts the search using candidate with all fields set to the

first value in their domain
• Executes repOk on the candidate

• Monitors repOk’s execution dynamically
• Records the field access order according to first access

• Generates the next candidate based on the execution
• Backtracks on the last field in field access order

• Prunes the search
• Avoids equivalent candidates

Uses bytecode instrumentation to insert monitors

Korat-JPF
14

Korat Search in JPF

Simple implementation of Korat using code instrumentation
• Use Verify.getInt, which returns a non-deterministic

value, to index into a field domain
• Use shadow boolean fields to monitor field accesses
• Track assigned objects of a field domain to ensure

exploration of non-isomorphic structures

Korat-JPF
15

Example: Code instrumentation in JPF
public class RedBlackTree {
 // data for finitization and search
 static Node[] nodes;
 static int assigned_nodes;
 static int min_size;
 static int max_size;

 // instrumentation for "root" field
 Node root;
 boolean init_root = false;
 Node get_root() {
 if (!init_root) {
 init_root = true;
 int i = Verify.getInt(0,
 min(assigned_nodes + 1,
 nodes.length - 1));
 if (i == assigned_nodes + 1)

assigned_nodes++;
 root = nodes[i];
 }
 return root;
 }

// instrumentation for "size" field
int size;
boolean init_size = false;
int get_size() {
 if (!init_size) {
 init_size = true;
 size = Verify.getInt(min_size, max_size);
 }
 return size;
}
static class Node {
... // analogous instrumentation for each field
}
boolean repOk() {... /* same as before*/}
boolean isTree() {
 if (get_root() == null) return get_size() == 0;
 if (get_root().get_parent() != null) return false;
 ... // replace read of each field "f"
 // with a call to "get_f" method
}

Korat-JPF
16

Example: Finitization in JPF

 // "N" is the bound for finitization
 static void main(int N) {
 nodes = new Node[N + 1]; // nodes[0] = null;
 for (int i = 1; i < nodes.length; i++) nodes[i] = new Node();
 min_size = max_size = N;
 RedBlackTree rbt = new RedBlackTree();
 // this one call to "repOk" will backtrack a number of times,
 // setting the fields of objects reachable from "rbt"
 if (rbt.repOk()) print(rbt);
 }
 ... // end of class RedBlackTree
}

A bound for the number of
 objects of each class

Korat-JPF
17

Optimizing Search in JPF

Groups of changes made in JPF:
• Modifying interpreter
• Reducing state comparison costs
• Reducing backtracking costs for heap
• Reducing bytecode execution costs
• Reducing costs for stacks and threads
• Reducing other overhead costs

These changes reduce the search time by over an order of magnitude

Korat-JPF
18

Modifying Interpreter

Idea: instead of code instrumentation, change the interpreter
itself

Modified the class that implements the bytecode that reads a
field from an object
• To check whether a field is initialized
• If not to create a non-deterministic choice point

No need to instrument the code
Makes it much easier to use Korat on JPF

Korat-JPF
19

Reducing State Comparison Costs

JPF is a stateful model checker:
• Stores (hash value of) the states that it visits
• Compares (hash value of) newly encountered states with

the visited states

Idea: disable state comparison
• Korat search does not need any state comparison
• The search always produces different states

Korat-JPF
20

Reducing State Comparison Costs (2)

Idea: reduce garbage collection (GC)
• GC helps the state comparison
• Unnecessary to perform GC that often
• Perform GC occasionally, only to reduce the amount of

memory

Korat-JPF
21

Reducing Backtracking Costs for Heap

State backtracking is expensive operation
• Storing and restoring the entire JVM states at the choice

points

Idea: undo backtracking
• Incrementally stores and restores states
• Only keeps track of the state changes that happen

between choice points
• Later restores the state by undoing these state changes

Korat-JPF
22

2

31

…n3n1…

2

1

n2.left n2.right
…nulln1…

n2.left n2.right

execution: remember change

Undo Backtracking

An execution of a field assignment

root.right = null

Korat-JPF
23

2

31
root.right = null

…n3n1…

2

1

n2.left n2.right
…nulln1…

n2.left n2.right

execution: remember change

backtracking: undo change

Undo Backtracking (2)

Reduces the execution time as it does not require JPF to clone
the integer array that encodes all fields of an object whose
one field is being written to

Korat-JPF
24

Reducing Backtracking Costs for Heap (2)

Idea: special handling of singleton non-deterministic choice
• Verify.getInt(int lo, int hi) does not need to create a

backtracking point if lo == hi

Both Undo backtracking and Singleton non-deterministic choice
changes have been added to JPF and are publicly available

Korat-JPF
25

Reducing Bytecode Execution Costs

JPF is an interpreter for Java bytecodes
For most bytecodes, JPF simply performs as a regular JVM
Slow in executing even regular bytecodes
Idea: use simple collections

• repOk methods build fairly small collections
• A simple library of collections that execute faster on JPF,

when collections are small
Idea: execute on JVM

• Moving our library structures execution from the JPF
level to the underlying JVM level

Korat-JPF
26

Reducing Costs for Stacks and Threads

A major portion of JPF time goes on manipulation of stacks and
threads

Idea: optimize stack handling
• Simplify stack frames
• Shallow cloning rather than deep cloning of some stack

frames
• Avoids “copy on write” when a stack frame is not shared

Idea: optimize thread handling
• Korat operates on single-threaded code
• Unnecessary to pay the overhead for multi-threaded code

• Recall DynamicAreaIndex triples that Peter mentioned

Korat-JPF
27

Reducing Other Overhead Costs

JPF is built as an extensible tool
JPF uses:

• Listeners
• Logging

Listeners and logging provide overhead in execution even
when they are not needed

Configuration flag to turn off listeners and logging

Korat-JPF
28

658.92
551.16
66.14

649.86
3,456.12
678.03
365.47
457.72

2,253.04
65.32

Mode 2

1,398.66
866.78
161.91

1,576.30
5,102.74
1,659.79
890.70

1,056.18
4,898.96
168.21

Mode 1

1,403.75
885.94
159.25

1,632.86
5,348.47
1,504.12
886.79

1,068.02
4,993.96
172.11

Base

Time (sec)

11
8
5

11
6
8
9
8

11
9

N

BinaryTree
BinHeap
DisjSet

DoublyLL
FaultTree

HeapArray
RedBlackTree

SearchTree
SinglyLL

SortedList

Subject

Experiment

31.29x
13.25x
13.12x
19.01x
10.58x
17.40x
11.45x
14.95x
24.32x
22.96x

44.86
66.89
12.13
85.91

505.57
86.43
77.44
71.46

205.31
7.50

52.12
81.90
14.87

101.04
634.98
103.51
101.05
87.07

239.23
8.26

72.15
90.11
16.02

123.14
631.90
136.28
112.23
110.15
316.87
11.09

223.12
278.70
16.12

158.17
2,405.72
136.15
128.05
114.16
766.14
11.21

Mode 6Mode 5Mode 4Mode 3

Time
speedup

• Mode 1: Modifying interpreter
• Mode M: includes all of the optimizations used in

Mode M-1
• Mode 2: Reducing state comparison costs
• Mode 3: Reducing backtracking costs for heap
• Mode 4: Reducing bytecode execution costs
• Mode 5: Reducing costs for stacks and threads
• Mode 6: Reducing other overhead costs

Exploration time for various modications to basic Korat-JPF

•Modifications of JPF
reduce the search
time by over an order
of magnitude

Evaluation: Time Speedup

Korat-JPF
29

5.53
5.67
5.62
5.78
6.20
5.58
5.95
5.79
5.76
5.21

Mode 6

6.76
6.68
5.68
6.53
7.07
5.68
7.00
6.76
6.50
6.08

Mode 2

88.19
35.32
15.15
83.70

258.91
21.17
63.52
84.85

262.48
14.82

Base

Peak Memory (MB)

11
8
5

11
6
8
9
8

11
9

N

BinaryTree
BinHeap
DisjSet

DoublyLL
FaultTree

HeapArray
RedBlackTree

SearchTree
SinglyLL

SortedList

Subject

Experiment

15.93x
6.23x
2.69x

14.47x
41.75x

3.79x
10.66x
14.64x
45.53x

2.84x

Memory
savings

Peak memory for selected modifications to basic Korat-JPF

•Used Sun's jstat monitoring tool to measure the peak usage of
garbage-collected heap

Evaluation: Memory Savings

Korat-JPF
30

Summary

Implemented the Korat search algorithm in JPF
A basic implementation results in an slow search
Modified several core operations of JPF to speed up the search
Our modifications reduce the search time in JPF by over an

order of magnitude
Two modifications are already included in the publicly available

JPF
• http://mir.cs.uiuc.edu/jpf

Future work
• JPF as a solver for constraints in other languages
• Parallelize JPF constraint solver

